Inclusion theorems of double Deferred Cesàro means II

Richard F. Patterson ${ }^{1}$, Fatih Nuray ${ }^{2}$ \& Metin Başarir ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, University of North Florida Jacksonville, Florida, 32224
${ }^{2}$ Department of Mathematical Sciences, Afyon Kocatepe University, Afyonkarahisar, Turkey
${ }^{3}$ Department of Mathematics, Sakarya University, Sakakya, Turkey
E-mail: rpatters@unf.edu ${ }^{1}$, fnuray@aku.edu.tr ${ }^{2}$, basarir@sakarya.edu. tr^{3}

Abstract

In 1932 R. P. Agnew present a definition for Deferred Cesàro mean. Using this definition R. P. Agnew present inclusion theorems for the deferred and none Deferred Cesàro means. This paper is part 2 of a series of papers that present extensions to the notion of double Deferred Cesàro means. Similar to part 1 this paper uses this definition and the notion of regularity for four dimensional matrices, to present extensions and variations of the inclusion theorems presented by R. P. Agnew in [2].

2010 Mathematics Subject Classification. 40B05. 40C05
Keywords. Double Cesàro mean, Deferred Cesàro mean, Double sequence, $R H$-Regular Matrix, P-convergent sequences.

1 Introduction

This paper is part 2 of a series of papers characterization the inclusion between Cesàro means and double Deferred Cesàro means. In part 1[11] we presented the notion of double Deferred Cesàro means which is a multi-dimensional analog and Agnew's Deferred Cesàro means in [2]. Using this notions and as series of basic results in [11], this paper present a series of inclusion theorems similar to the following: The double Cesáro mean includes $D_{m-1, q_{m}, n-1, p_{n}}$ be a Deferred Cesàro mean with $q_{m}=m, p_{n}=n ; m \neq \alpha_{1}, \alpha_{2}, \ldots$ and $n \neq \beta_{1}, \beta_{2}, \ldots$ with

$$
q_{\alpha_{i}}=\alpha_{i+1}-1 ; i=1,2,3, \ldots, \alpha_{m}
$$

and

$$
p_{\beta_{j}}=\beta_{j+1}-1 ; j+1,2,3, \ldots, \beta_{n}
$$

where $\left\{q_{\alpha_{i}}\right\}$ and $\left\{p_{\beta_{j}}\right\}$ are increasing single dimensional sequences of integers such that $\alpha_{m}>m$ and $\beta_{n}>n$.

2 Definitions, notations and preliminary results

The definitions, notations, and preliminary results are similar to those in Part 1 [11] which are restated here for the purpose of completeness.

Definition 2.1 (Pringsheim, 1900). A double sequence $x=\left\{x_{k, l}\right\}$ has a Pringsheim limit L (denoted by P-lim $x=L$) provided that, given an $\varepsilon>0$ there exists an $N \in \mathbf{N}$ such that $\left|x_{k, l}-L\right|<\varepsilon$ whenever $k, l>N$. Such an $\{x\}$ is described more briefly as "P-convergent".

Definition 2.2 (Patterson, 2000). A double sequence $\{y\}$ is a double subsequence of $\{x\}$ provided that there exist increasing index sequences $\left\{n_{j}\right\}$ and $\left\{k_{j}\right\}$ such that, if $\left\{x_{j}\right\}=\left\{x_{n_{j}, k_{j}}\right\}$, then $\{y\}$ is formed by

x_{1}	x_{2}	x_{5}	x_{10}
x_{4}	x_{3}	x_{6}	-
x_{9}	x_{8}	x_{7}	-
-	-	-	.-

In [13] Robison presented the following notion of conservative four-dimensional matrix transformation and a Silverman-Toeplitz type characterization of such notion.

Definition 2.3. The four-dimensional matrix A is said to be RH-regular if it maps every bounded P -convergent sequence into a P-convergent sequence with the same P-limit.

The assumption of bounded was added because a double sequence which is P-convergent is not necessarily bounded. Along these same lines, Robison and Hamilton presented a Silverman-Toeplitz type multidimensional characterization of regularity in [3] and [13].

Theorem 2.4. (Hamilton [3], Robison [13]) The four-dimensional matrix A is RH-regular if and only if
$R H_{1}: ~ \mathrm{P}_{-1 \mathrm{lim}_{m, n}} a_{m, n, k, l}=0$ for each k and $l ;$
$R H_{2}: \mathrm{P}-\lim _{m, n} \sum_{k, l=0,0}^{\infty} a_{m, n, k, l}=1$;
$R H_{3}: \mathrm{P}-\lim _{m, n} \sum_{\sum_{k=0}^{\infty}}^{\infty}\left|a_{m, n, k, l}\right|=0$ for each l;
$R H_{4}: \mathrm{P}-\lim _{m, n} \sum_{l=0}^{\infty}\left|a_{m, n, k, l}\right|=0$ for each k;
$R H_{5}: \sum_{k, l=0,0}^{\infty}\left|a_{m, n, k, l}\right|$ is P-convergent;
$R H_{6}$: there exist finite positive integers Δ and Γ such that

$$
\sum_{k, l>\Gamma}\left|a_{m, n, k, l}\right|<\Delta .
$$

The main goals of this paper includes the comparison of double Cesàro mean transformation

$$
(C, 1,1)_{m, n, k, l}:=\left\{\begin{array}{lll}
\frac{1}{m n}, & \text { if } \quad k \leq m \text { and } l \leq n \\
0, & \text { if } \quad \text { otherwise }
\end{array}\right.
$$

with the double Deferred Cesàro mean

$$
D_{m, n, k, l}:= \begin{cases}\frac{1}{\left(\alpha_{m}-\beta_{m}\right)\left(q_{n}-p_{n}\right)}, & \text { if } \quad \beta_{m}<k \leq \alpha_{m} \text { and } p_{n}<l \leq q_{n} \\ 0, & \text { if } \quad \text { otherwise }\end{cases}
$$

where $\left[p_{n}\right]\left[q_{n}\right]\left[\alpha_{m}\right]$, and $\left[\beta_{m}\right]$ are sequences of nonnegative integers satisfying

$$
\begin{equation*}
\alpha_{m}<\beta_{m}, \text { and } p_{n}<q_{n} \text { for } m, n=1,2 \ldots ; \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m} \beta_{m}=+\infty, \text { and } \lim _{n} q_{n}=+\infty \tag{1.2}
\end{equation*}
$$

Using these four dimensional transformations we shall present a catalog of inclusion theorems such as the following. The four dimensional summability method M include $D_{p_{n}, \alpha_{n}, q_{n}, \beta_{n}}$ where p_{n} and q_{n} for almost all n is a give non-negative integer p if and only if α_{n} and β_{n} are almost all positive integers.

3 Main results

Theorem 3.1. The Double Cesàro transformation includes every Double Deferred Cesàro mean of the form $D_{p_{n}, \alpha_{n} q_{n}, \beta_{n}}$ for which α_{n} and β_{n} contains almost all positive integers.
Proof. Let $\left[x_{k, l}\right]$ be summable by $D_{p_{n}, \alpha_{n}, q_{n}, \beta_{n}}$ (say to L) such that $\mathrm{P}-\lim _{m, n} D_{m, n}=L$ and choose two integers K and L large such that $\left[p_{m}\right]$ and $\left[q_{n}\right]$ contains all integers greater than K and L, respectively. Thus let $i_{1}=i_{2}=i_{3}=\cdots=i_{K}=1$ and $j_{1}=j_{2}=j_{3}=\cdots=j_{L}=1$ and determine for $m>K$ and $n>L$ index i_{m} and j_{n} is such that $p_{i_{m}}=m$ and $q_{i_{n}}=n$. Since $\lim _{m} i_{m}=+\infty$ and $\lim _{n} j_{n}=+\infty$, it follows

$$
\mathrm{P}-\lim _{m, n} D_{m, n}=L \text { and } \mathrm{P}-\lim _{m, n} D_{i_{m}, j_{n}}=L
$$

Therefore $[x]$ is summable by $D_{p_{m}, m, q_{n}, n}$ to L. The result follows from Lemma 3.3 of [11]. Q.e.d.
Theorem 3.2. The Double Cesàro transformation fails to contain includes $D_{p_{n}, \alpha_{n}, q_{n}, \beta_{n}}$ if there exists an Pringsheim increasing sequence double sequence $\left[\alpha_{k, l}\right]$ of integers whose elements belong to neither $\left[p_{n}\right]$ nor $\left[q_{n}\right]$.

Proof. Let us consider the following

$$
\bar{M}_{m, n}=\left\{\begin{array}{ccc}
0, & \text { if } \quad(m, n) \neq\left(\alpha_{m}, \beta_{n}\right) ; m, n=1,2,3, \ldots \\
x_{m, n}, & \text { if } \quad(m, n)=\left(\alpha_{m}, \beta_{n}\right) ; m, n=1,2,3, \ldots
\end{array}\right.
$$

where $[x]$ is a P-divergent double sequence. Let $\left[s_{m, n}\right]$ be double sequence that is mapped by M into \bar{M}. Condition 3.2, $p_{m} \neq \alpha_{m}$, and $q_{n} \neq \beta_{n}$ asure us that $D_{p_{n}, \alpha_{n}, q_{n}, \beta_{n}}$ sum $[x]$ to zero. Since M fails to sum $[x]$.

The following theorem follows from Theorem 3.1 and 3.2.
Theorem 3.3. The four dimensional summability method M include $D_{p_{n}, \alpha_{n}, q_{n}, \beta_{n}}$ where p_{n} and q_{n} for almost all n is a give non-negative integer p if and only if α_{n} and β_{n} are almost all positive integers.

Theorem 3.4. The four dimensional summability method M include $D_{m-1, q_{m}, n-1, \beta_{n}}$ where $q_{m}-m$ and $p_{n}-n$ both increases monotonically with m and n, respectively if and only if $q_{m}-m$ and $p_{n}-n$ both are both bounded.

Proof. To establish to sufficiency part not that $q_{m}-m$ and $p_{n}-n$ must have a limit, say α and β, respectively and that $q_{m}-m=\alpha$ and $p_{n}-n=\beta$ for almost all m and n. Thus $\left\{q_{m}\right\}$ and $\left\{p_{n}\right\}$ contains almost all positive integers and Theorem 3.1 grants us the results.

To established the necessary part, suppose $q_{m}-m$ and $p_{n}-n$ increases monotonically with m and n are both unbounded. The goal now is to show that the set of double sequences that are double Cesàro summable are not summable by the double Deferred Cesàro mean. Let $m_{1}=n_{1}=1$ and m_{2} and n_{2} are the smallest integers such that

$$
q_{m}-m>q_{m_{1}}-m_{1} \text { and } p_{n}-n>p_{n_{1}}-n_{1}
$$

Then choose m_{3} and n_{3} to be the smallest integers m and n such that

$$
q_{m}-m>q_{m_{2}}-m_{2} \text { and } p_{n}-n>p_{n_{2}}-n_{2}
$$

Thus having chosen

$$
m_{1}<m_{2}<\cdots<m_{\alpha} \text { and } n_{1}<n_{2}<\cdots<n_{\beta}
$$

We then choose $m_{\alpha+1}$ and $n_{\beta+1}$ to be the smallest integers such that

$$
q_{m}-m>q_{m_{\alpha}}-m_{\alpha} \text { and } p_{n}-n>p_{n_{\beta}}-n_{\beta}
$$

We than define a double sequence $\left\{s_{k, l}\right\}$ as follows:

$$
s_{k, l}=\left\{\begin{array}{ccc}
q_{m_{i}} p_{n_{j}}, & \text { if } \quad k=q_{m_{i}} \text { and } l=p_{n_{j}} ; i, j=1,2,3, \ldots \\
k l, & \text { if } \quad k \neq q_{m_{i}} \text { and } / \text { or } l \neq p_{n_{j}} ; i, j=1,2,3, \ldots
\end{array}\right.
$$

Note $D_{m, n}$ maps $\left\{s_{k, l}\right\}$ into 1. for all (m, n). Thus $\left\{s_{k, l}\right\}$ is D-summable to 1 . Also $\left\{s_{k, l}\right\}$ is not M-summable, since $\mathrm{P}-\lim _{k, l} \frac{s_{k, l}}{k, l} \neq 0$. Thus the double Cesàro mean is contained in the double Deferred Cesàro mean.
Q.E.D.

Theorem 3.5. Let $D_{m-1, q_{m}, n-1, p_{n}}$ be a Deferred Cesàro mean with $q_{m}=m, p_{n}=n ; m \neq$ $\alpha_{1}, \alpha_{2}, \ldots$ and $n \neq \beta_{1}, \beta_{2}, \ldots$ with

$$
q_{\alpha_{i}}=\alpha_{i+1}-1 ; i=1,2,3, \ldots, \alpha_{m}
$$

and

$$
p_{\beta_{j}}=\beta_{j+1}-1 ; j+1,2,3, \ldots, \beta_{n}
$$

where $\left\{q_{\alpha_{i}}\right\}$ and $\left\{p_{\beta_{j}}\right\}$ are increasing single dimensional sequences of integers such that $\alpha_{m}>m$ and $\beta_{n}>n$. Then D is included in M if and only if $\frac{q_{m}}{m}$ and $\frac{p_{n}}{n}$ are bounded for all m and n.
Proof. Note $D_{m-1, m, n-1, n}$ is the identity transformation. Let us consider the ordered pair (m, n) and observe that for each pair (m, n), let

$$
i=i_{m} \text { and } j=j_{n}
$$

be such that $\alpha_{i} \leq m<\alpha_{i+1}$ and $\beta_{j} \leq n<\beta_{j}$. Let $\left\{s_{m, n}\right\}$ be a given double sequence and consider the transformation

$$
M_{m, n}=\frac{1}{m n}\left[\begin{array}{ccccccccc}
s_{1,1} & + & s_{1,2} & + & s_{1,3} & + & \cdots & + & s_{1, n} \\
s_{2,1} & + & s_{2,2} & + & s_{2,3} & + & \cdots & + & s_{2, n} \\
\vdots & \vdots \\
s_{m, 1} & + & s_{m, 2} & + & s_{m, 3} & + & \cdots & + & s_{m, n}
\end{array}\right] .
$$

Using the definition of double Deferred Cesàro mean we obtain the following

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
s_{\alpha_{i}, 1} & + & \cdots & + & s_{\alpha_{i}, \beta_{1}-1} \\
s_{\alpha_{i}+1,1} & + & \cdots & + & s_{\alpha_{i}+1, \beta_{1}-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
s_{\alpha_{i+1}-1,1} & + & \cdots & + & s_{\alpha_{i+1}-1, \beta_{1}-1}
\end{array}\right]+\left[\cdots+\begin{array}{ccccc}
s_{\alpha_{i}, \beta_{j}} & + & \cdots & + & s_{\alpha_{i}, \beta_{j+1}-1} \\
s_{\alpha_{i}+1,1} & + & \cdots & + & s_{\alpha_{i}+1, \beta_{1}-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
s_{\alpha_{i+1}-1, \beta_{j}} & + & \cdots & + & s_{\alpha_{i+1}-1, \beta_{j+1}-1}
\end{array}\right]}
\end{aligned}
$$

Let us denote the above sum by $\Omega_{m, n}$ and the sum below by $\Lambda_{m, n}$

Therefore $M_{m, n}=\frac{1}{m n}\left(\Omega_{m, n}-\Lambda_{m, n}\right)$. It is important to observe that if $m=\alpha_{i+1}-1$ and/or $n=\beta_{j+1}-1$ then the terms in $\Lambda_{m, n}$ will not exist that is if $m=\alpha_{i+1}-1$ and/or $n=\beta_{j+1}-1$ then the terms in the rows and/or columns will not exists. Let us also denote the following sum by
$\bar{\Omega}_{m, n}$

$$
\begin{array}{ccccccc}
\frac{\sum_{k, l=1,1}^{\alpha_{1}, \beta_{1}} s_{k, l}}{m n} & + & \frac{\alpha_{1}\left(\beta_{2}-\beta_{1}\right)}{m n} D_{0,1} & + & \cdots & + & \frac{\alpha_{1}\left(\beta_{j+1}-\beta_{j}\right)}{m n} D_{0, j} \\
\frac{\left(\alpha_{2}-\alpha_{1}\right) \beta_{1}}{m} D_{1,0} & + & \frac{\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\beta_{1}\right)}{m} D_{1,1} & + & \cdots & + & \frac{\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{j+1}-\beta_{j}\right)}{m} D_{1, j} \\
\frac{\left(\alpha_{3}-\alpha_{2}\right) \beta_{1}}{m n} D_{2,0} & + & \frac{\left(\alpha_{3}-\alpha_{2}^{m}\right)\left(\beta_{2}-\beta_{1}\right)}{m n} D_{2,1} & + & \cdots & + & \frac{\left(\alpha_{3}-\alpha_{2}\right)\left(\beta_{j+1}-\beta_{j}\right)}{m n} D_{2, j} \\
+ & + & + & + & + & + & m n \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
+ & + & + & + & + & + & + \\
\frac{\left(\alpha_{i+1}-\alpha_{i}\right) \beta_{1}}{m n} D_{i, 0} & + & \frac{\left(\alpha_{i+1}-\alpha_{i}\right)\left(\beta_{2}-\beta_{1}\right)}{m n} D_{i, 1} & + & \cdots & + & \frac{\left(\alpha_{i+1}-\alpha_{i}\right)\left(\beta_{j+1}-\beta_{j}\right)}{m n} D_{i, j}
\end{array}
$$

and also denote the following sum by $\bar{\Lambda}_{m, n}$

$$
\begin{array}{cccccccccccc}
& & & & & & & D_{1, n+1} & + & \cdots & + & D_{1, \beta_{j+1}-1} \\
& & & & & & & D_{2, n+1} & + & \cdots & + & D_{2, \beta_{j+1}-1} \\
& & & & & & & & & & + & \cdots \\
& & & & & \vdots \\
D_{m+1,1} & + & \cdots & + & D_{m+1, n} & + & D_{m+n+1} & + & \cdots & + & D_{m, \beta_{j+1}-1} \\
D_{m+2,1} & + & \cdots & + & D_{m+2, n} & + & D_{m+2, n+1} & + & \cdots & + & D_{m+1, \beta_{j+1}-1} \\
\vdots & + & D_{m+2, \beta_{j+1}-1} \\
D_{\alpha_{i+1}-1,1} & + & \cdots & + & D_{\alpha_{i+1}-1, n} & + & D_{\alpha_{i+1}-1, n+1} & + & \cdots & + & D_{\alpha_{i+1}-1, \beta_{j+1}-1}
\end{array} .
$$

Then we can now rewrite $M_{m, n}$ in the following manner $\bar{\Omega}_{m, n}-\frac{1}{m n} \bar{\Lambda}_{m, n}$. The relation $\bar{\Omega}_{m, n}-$ $\frac{1}{m n} \bar{\Lambda}_{m, n}$ hold for each (m, n) and defines a four-dimensional transformation of the form

$$
\sigma_{m, n}=\sum_{k, l=1,1}^{\infty, \infty} a_{m, n, k, l} s_{k, l}
$$

which carries $D_{m, n}$ into $M_{m, n}$. This transformation clearly satisfies RH_{1} and RH_{2}. This transformation satisfies RH_{3} and RH_{4} only if $\frac{2 \alpha_{i+1}-m-2}{m}$ and $\frac{2 \beta_{j+1}-n-2}{n}$ are bounded respectively for each (m, n), which is equivalent to $\frac{\alpha_{i+1}}{m}$ and $\frac{\alpha_{i+1}^{m}}{m}$ are bounded, which is also equivalent to the boundedness of $\frac{q_{m}}{m}$ and $\frac{p_{n}}{n}$ for each (m, n). Condition RH_{5} and RH_{6} hold only when both $\frac{2 \alpha_{i+1}-m-2}{m}$ and $\frac{2 \beta_{j+1}-n-2}{n}$ are bounded, and as above the is equivalent to boundedness of $\frac{q_{m}}{m}$ and $\frac{p_{n}}{n}$ for each (m, n). Since D is a factorable four-dimensional summability matrix the main theorem in [1] assure us that it has an inverse. Thus the result follows for the Robison-Hamilton characterization of regularity.
Q.E.D.

Theorem 3.6. The double Cesáro mean includes $D_{m-1, q_{m}, n-1, p_{n}}$ be a Deferred Cesàro mean with $q_{m}=m, p_{n}=n ; m \neq \alpha_{1}, \alpha_{2}, \ldots$ and $n \neq \beta_{1}, \beta_{2}, \ldots$ with

$$
q_{\alpha_{i}}=\alpha_{i+1}-1 ; i=1,2,3, \ldots, \alpha_{m}
$$

and

$$
p_{\beta_{j}}=\beta_{j+1}-1 ; j+1,2,3, \ldots, \beta_{n}
$$

where $\left\{q_{\alpha_{i}}\right\}$ and $\left\{p_{\beta_{j}}\right\}$ are increasing single dimensional sequences of integers such that $\alpha_{m}>m$ and $\beta_{n}>n$.

Proof. Observe that for each pair (m, n), let

$$
i=i_{m} \text { and } j=j_{n}
$$

be such that $h_{i} \leq m<h_{i+1}$ and $t_{j} \leq n<t_{j+1}$. Let $\left\{s_{m, n}\right\}$ be a given double sequence and consider the following four dimensional Cesàro transformation

$$
M_{m, n}=\frac{1}{m n}\left[\begin{array}{ccccccccc}
s_{1,1} & + & s_{1,2} & + & s_{1,3} & + & \cdots & + & s_{1, n} \\
s_{2,1} & + & s_{2,2} & + & s_{2,3} & + & \cdots & + & s_{2, n} \\
\vdots & \vdots \\
s_{m, 1} & + & s_{m, 2} & + & s_{m, 3} & + & \cdots & + & s_{m, n}
\end{array}\right] .
$$

Using the definition of double Deferred Cesàro mean we can rewrite $m n M_{m, n}$ using the following, respectively, $A_{m, n}^{i}, A_{m, n}^{i-1}, A_{m, n}^{i-2} \cdots, A_{m, n}^{\alpha}$ and $K_{m, n}$ where $K_{m, n}$ is

$$
\begin{array}{ccccccc}
s_{1,1} & + & s_{1,2} & + & \cdots & + & s_{1, \beta_{\delta}-1} \\
s_{2,1} & + & s_{2,2} & + & \cdots & + & s_{2, \beta_{\delta}-1} \\
\vdots & + & \vdots & + & \cdots & + & \vdots \\
s_{\beta_{\Delta}-1,1} & + & s_{\beta_{\Delta}-1,2} & + & \cdots & + & s_{\beta_{\Delta}-1, \beta_{\delta}-1}
\end{array}
$$

with Δ and δ are 2 or 1 depending on weather α and/ or β are odd or even, and the A 's are define below, respectively

$$
\begin{aligned}
& \begin{array}{ccccccc}
s_{m, n} & + & s_{m, n-1} & + & \cdots & + & s_{m, t_{j}+1} \\
s_{m-1, n} & + & s_{m-1, n-1} & + & \cdots & + & s_{m-1, t_{j}+1} \\
\vdots & & \vdots & \vdots & + & \cdots & + \\
s_{h_{i}+1, n} & + & s_{h_{i}+1, n-1} & + & \cdots & + & s_{h_{i}+1, t_{j}+1}
\end{array}
\end{aligned}
$$

It is clear that

$$
M_{m, n}=\frac{1}{m n}\left[A_{m, n}^{i}+A_{m, n}^{i-1}+A_{m, n}^{i-2}+\cdots+A_{m, n}^{\alpha}+K_{m, n}\right] .
$$

Now using the above identities we can rewrite our equation as follow $T_{m, n}=M_{m, n}-\frac{K_{m, n}}{m n}$ and the D 's grants us the following:

$$
\begin{gathered}
T_{m, n}=\frac{1}{m n}\left[\begin{array}{ccccccc}
D_{m, n} & + & D_{m, n-1} & + & \cdots & + & D_{m, \beta_{j}+1} \\
D_{m-1, n} & + & D_{m-1, n-1} & + & \cdots & + & D_{m-1, \beta_{j}+1} \\
\vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
D_{\alpha_{i}+1, n} & + & D_{\alpha_{i}+1, n-1} & + & \cdots & + & D_{\alpha_{i}+1, \beta_{j}+1}
\end{array}\right]+ \\
\begin{array}{l}
\frac{\left(\alpha_{i}-\alpha_{i-1}+1\right)\left(\beta_{j}+1-n\right)}{m n} D_{\alpha_{i}, n} \\
\vdots
\end{array} \\
\\
\\
\\
\end{gathered}
$$

Since the above equalities define four dimensional RH-regular transformation from $\left\{D_{m, n}\right\}$ to $\left\{T_{m, n}\right\}$ we are granted the if the double sequence $\left\{D_{m, n}\right\}$ convergence to L in the Pringsheim sense then $\left\{T_{m, n}\right\}$ convergence to L in the Pringsheim sense and since the double sequence $\left\{K_{m, n}\right\}$ is bounded then $\left\{M_{m, n}\right\}$ convergence to L in the Pringsheim sense. Thus double Cesàro means includes double Deferred Cesàro means. The completes the proof.
Q.E.D.

References

[1] C. R. Adams, On Summability of Double Series, Trans. Amer. Math. Soc. 34, No. 2 (1932), 215-230.
[2] R. P. Agnew, On Deferred Cesàro Means, Annals of Math., 33 (1932), 413-421.
[3] H. J. Hamilton, Transformations of Multiple Sequences, Duke Math. Jour., 2 (1936), 29-60.
[4] H. J. Hamilton, A Generalization of Multiple Sequences Transformation, Duke Math. Jour., 4 (1938), 343-358.
[5] H. J. Hamilton, Change of Dimension in Sequence Transformation, Duke Math. Jour., 4 (1938), 341-342.
[6] H. J. Hamilton, Preservation of Partial Limits in Multiple Sequence Transformations, Duke Math. Jour., 5 (1939), 293-297.
[7] G. H. Hardy, Divergent Series. Oxford Univ. Press, London. 1949.
[8] K. Knopp, Zur Theorie der Limitierungsverfahren (Erste Mitteilung), Math. Zeit. 31 (1930), 115-127.
[9] I. J. Maddox, Some Analogues of Knopp's Core Theorem, Internat. J. Math. \& Math. Sci. 2(4) (1979) 604-614. 2 (1970), 63-65.
[10] R. F. Patterson, Analogues of some Fundamental Theorems of Summability Theory, Internat. J. Math. \& math. Sci. 23(1), (2000), 1-9.
[11] R. F. Patterson \& F. Nuray, Inclusion Theorems of Double Cesáro Means, (under consideration).
[12] A. Pringsheim, Zur theorie der zweifach unendlichen zahlenfolgen, Mathematische Annalen, 53 (1900) 289-320.
[13] G. M. Robison, Divergent Double Sequences and Series, Amer. Math. Soc. trans. 28 (1926) 50-73.

